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Abstract— A fast recursive algorithm is used to compute the

scattering properties of finite array of strip gratings on a di-
electric slatk This algorithm has a computational complexity

of O(N log2 N) for one incident angle and O (N2 log N) for
N incident angles. It uses plane wave basis for expanding the

incident wave and the scattered wave. The scattered wave is

expanded in terms of a Sommerfeld-type integral with spectral

distribution along a vertical branch cut, rendering its expan-

sion very efficient. To validate the scattering solution obtained
using the yecursive algorithm, comparisons with the method of
moments are illustrated. The current distributions on the strips

and scattering patterns are both presented. Since this algorithm
has reduced computational complexity and is fast compared to

other conventional methods, it can be used to analyze very large

strip arrays. Scattering solution of a 50-wavelength wide strip is
illustrated.

I. INTRODUCTION

T HE WAVE scattering by strip gratings supported by a

dielectric slab remains a canonical problem in wave

scattering theory. It also finds applications in a number of

areas like frequency selective surface, slow-wave structures,

leaky-wave antennas, and microstrip arrays. For instance, in

frequency-selective-surface applications, it could be used to

reduce radar cross sections. Hence, wave scattering from

strip gratings< has been investigated by many authors [ 11–[61.

However, most works are limited to infinite periodic gratings.

Recently, we have developed a fast recursive method for di-

electric scattering solutions [7]. This method has been adapted

to deriving the solution of a finite nonperiodical strip arrays

or a single strip [8] suspended in free space. However, for

practical applications, the strip arrays are usually supported by

a dielectric slab. This paper extends the method of the previous

work [8] to strip arrays supported by a dielectric slab. Due to

the proximity of the slab to the st~p array, the introduction

of the slab will change the scattering properties of the strip

array. This change is caused by the interaction between strips

and the slab. Numerical results indicate that this interaction is

apparent by studying the current distribution of a large strip.

In this implementation of the recursive algorithm, plane

waves are used as bases for the incident wave as well as the

scattered waves. In particular, the scattered wave is expanded
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Fig. 1. Geomehy of the problem.
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with spectral distribution along a vertical branch cut of the

Sommerfeld-type integral. This greatly expedites the represen-

tation of the waves, and results in a computational algorithm

with O(lV log2 N) complexity for a single incident wave, and

with 0(N2 log N) complexity for IV incident waves.

II. FORMULATION

Fig. 1 shows the geometry of strips which are infinitely thin

perfect conductors supported by a dielectric slab. The relative

dielectric constant of the slab is C.. The ith strip is located at

d;, with width Wi, where z = 1,2,... , N, and N is the total

number of the strips. For a uniform array, we use a to denote

the width of each strip and d, the distance between the centers

of two adjacent strips. When a plane wave is incident. it will

induce current (and charge) distributions on the strips, which

in turn radiate to form the scattered waves. Here, the induced

current (and charge) is unknown. It can be solved for by the

recursive method illustrated in detail in [8]. In the following,

we shall first de~ve the Green’s functi(m for this geometry,

and then illustrate how the recursive method can be applied to

this problem. In the following analysis, the time dependence

of e–’Wt is suppressed throughout and (d/8z) = O.

Using the spectral technique, for Il. polarized field., the

o-component of the electric field due to an x- directed line

current source is given by [10]

(1)
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In the same way, we can derive the corresponding field fol

EZ polarized case. It is

A&
/

w &@ Ivl + RTEe%u)e~~. (z-z’) dkZ, (2)

—m Y

EZ = iwvOAZ . (2a)

In the above, RTM and RTE are generalized reflection

coefficients [10] for TM-to-y and TE-to-y waves, respectively.

They have different forms for different configurations.

In summary, the fields due to a line source in a planarly

layered medium can be expressed in terms of one component

of the potential A. When the source is on the boundary

(y’ = O) and for matching boundary condition, we need only

consider the field at y = O. In this case, A has the following

form

/

w dkz
A(z–x’)=+ _ zk,(Z–Z’)

~ =(
l+R)e , (3)

where, k$ = k2 – k%. The “+” sign corresponds to TE

case with A = A. and R = RTE, whereas the “-” sign

corresponds to TM case with A = A. and R = RT~l [10].

The inversion path of the Fourier integral in (3) is taken to

be the Sommerfeld integration path, which is slightly above

the real axis for km < 0 and slightly below the real axis for

kz >0 [10]. When z – x’ is large, the integrand becomes a

rapidly oscillating function of k$, and its numerical evaluation

becomes difficult. To expedite the numerical evaluation of the

integral, the path of the integration is deformed to a branch cut.

Hence, when h is small, (3) is equal to a branch cut integral

plus the contribution from the pole of R at Itz = kZP, i.e.,

A(LZ– z’) =

1

/

m 2 + R(kx, ky) + R(kz, ‘kY)e(,k–s)lz–z’l d~
—

Go ky

tk. plz–z’l
+ fpe ,

(4)

where

fp = 2mik 1~~ (kr - k.P)R(kZ, kg). (4a)
. =P

The branch-cut integral corresponds to a space wave with

the phase velocity of free space. It corresponds to a wave

with most of its energy traveling in the free space. The pole

corresponds to a guided mode in the slab region [10], [1 1].

Since it is a guided mode with phase velocity slower than that
of the free space, it will be evanescent in the free-space region.

Hence, it is often called a surface wave. Also, when the slab

thickness is small, the guided wave has a phase velocity close

to that of free space [1 1].

After the integral is truncated and discretized, (4) can be

expressed as

M+l

A(z – x’) = ~ gme-”nl’-”l, (5)
Tn=l

where Um = Sm —ik, sm and gm, m = 1,2, . . ..M are

numerical integration points and coefficients, respectively,

uM+l = —ikZP, and gM+~ = fP.

Equation (5) indicates that the scattered field from a strip

can be expanded in terms of a plane-wave basis. Consequently,

this allows a T matrix be defined for a single substrip using a

plane wave basis. Then, the recursive algorithm described in

[7] and [10] can be used to find the scattering solution of a

finite strip array. The adapted algorithm is described in [8].

Formally, (5) expands the field using the plane wave basis

which is similar to the method used in [8]. Hence the recursive

algorithm described in [8] can be used for this problem without

much change. Again, in order to reduce the computational

complexity, the discrete points s~, m = 1, 2, . . . . M, are

unevenly distributed which is the densest ats = Oand becomes

increasingly coarser when s ~ cc. In this manner, the number

of sampling needed for the integral is minimized, and grows

only logarithmically with the size of the problem.

To test the validity of the recursive result, method of

moments is also used to solve the same problem. In this

method, the Green’s function is found by evaluating the

Sommerfeld integral numerically. Since the convergence of the

integration in (4) is very slow, we rewrite it into the

form to accelerate its convergence:

ollowing

dkZ, (6)

where

We can show that

R– R~ a l/k~,(kz+ co). (7)

Hence, the convergence of (6) is much faster than that of (4).

III. COMPUTATIONAL COMPLEXITY

The computational complexity of the above algorithm can

be analyzed as before [7]–[10]. Previous analysis shows the

complexity of the recursive algorithm to be O (NP2 ), where P

is the number of harmonics needed to represent the aggregate

T matrix. The size of the aggregate T matrix is P x P.

In this problem, since the plane waves are expanded on a

branch-cut integral which are efficient, and that the number

of sampling points grows logarithmically as the size of the

problem, the number of plane waves P needed to represent

the scattered field or the aggregate T matrix is proportional to

log N, Hence, the total complexity of the recursive algorithm

is O(h’ log2 N).

When IV incident waves is assumed in this problem, the

aggregate T matrix is no longer square, but an (N+P) x P ma-

trix [8]. The total computational complexity of the algorithm

can be shown to be O(IV(N + P)P) which is 0(N2 log IV)

when IV is large. Hence, this algorithm represents a fast way

of solving this scattering problem with reduced complexity

compared to other methods of solving this problem.
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Fig. 2. Induced current of a 1A strip on a slab without a ground plane
(e, = 2.1, h = O.IA). (a) H, incidence at @’ = 45°; (b) E= incidence
at W = 60°.

IV. NUMERICAL RESULTS

In order to test the validity of the algorithm and analyze the

scattering properties of slab, we computed the current distri-

bution for several single strips and compared the solution with

the method of moments. Motivated by frequency-selective

surface applications, the following studies will be done without

the presence of the ground plane. Notice, however, that

frequency-selective surfaces are often studied by assuming

infinite periodicity so that Floquet theorem can be invoked.

However, in practice, the frequency-selective surfaces are

truncated and finite in extent. The algorithm here represents an

efficient way to study finite-extent frequent y-selective surfaces

where Floquet theorem can not be invoked.

Fig. 2(a) shows the current of a 1A strip on a slab (cT =

2.1, h = O.lA) for Hz incident wave at 19i= 45°. The moment

method result is also shown in this figure. The agreement

between them is good. Fig. 2(b) is the result of the same

problem for E, polarized case with @ = 60°.
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Fig. 3. Induced current of a 50A strip on a slab without a ground plane (Hz
incident wave at W = 90° )

10

0

-40

-50-.
0 60 120 180 240 300 360

0

Fig. 4. Scattering pattern of a uniform array of 10 strips on a slab without
a ground plane (G. = 2.57, h = 0.171A, a = d/2, E.-wave incidence at
d; = 600).

Fig. 3 shows the current of a larger strip (w = 50A, HZ

incident wave at Oi = 90°, E. = 2.6, h = O.IA). From this

figure, we observe the effect of the interaction between the

incident wave (ei~:’ ) and the guided wave (e@). The fast

variation is due to the sum of their spatial frequencies while

the slower variation is due to the difference of their spatial

frequencies. This interaction was not observed when the strips

were suspended in air, because there was no guided mode on

the dielectric slab [8].

For a strip array, we computed the scattering pattern of a

10 strip uniform array. The result is shown in Fig. 4. We find

that as the frequency changes, the reflected field also changes.

To see this more clearly, we draw a curve of the RCS in the

reflect direction versus normalized d, which is the separation

between strips, as shown in Fig. 5. The interference prolperty

of the strips, where different magnitudes of reflections and

transmissions can occur at different frequencies, is often used

for frequency-selective surface applications.
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Flg.5. RCSversus cZ/Afor aunifonn array of 10stripson a slab without
a ground plane (e. = 2.57, h = 0.171A, a = d/2, E,-wave incidence at

@ = 600).

V. CONCLUSION

In conclusion, we have demonstrated a fast algorithm with

reduced computation complexity for computing current dis-

tributions and scattered fields of strips and strip arrays on

a dielectric slab. This algorithm is shown to work for both

the benign Ez polarization and the pathological Ifz polar-

ization. Because of its reduced computational complexity,

the algorithm provides a way to analyze large, finite, planar

strip gratings supported by a dielectric slab. By changing the

reflection coefficients in (3), this algorithm can be applied to

the above grating structure with a dielectric slab on a conductor

ground.

Compared to the strips without dielectric slab, we now have

to account for the effect of the surface wave (or guided wave)

pole in the interaction between the strips. When the slab is

thin compared to wavelength, the phase velocity of the surface

wave (pole contribution) is almost the same of that of the space

wave (branch cut contribution). The interference between the

surface wave and the space wave results in a slow variation

in the current distribution on a wide strip.
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