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Electromagnetic Scattering of Finite
Strip Array on a Dielectric Slab

Cai-Cheng Lu and Weng Cho Chew, Fellow, IEEE

Abstract— A fast recursive algorithm is used to compute the
scattering properties of finite array of strip gratings on a di-
electric slab: This algorithm has a computational complexity
of O(Nlog* N) for one incident angle and O(N2logN) for
N incident angles. It uses plane wave basis for expanding the
incident wave and the scattered wave. The scattered wave is
expanded in terms of a Sommerfeld-type integral with spectral
distribution along a vertical branch cut, rendering its expan-
sion very efficient. To validate the scattering solution obtained
using the recursive algorithm, comparisons with the method of
moments are illustrated. The current distributions on the strips
and scattering patterns are both presented. Since this algorithm
has reduced computational complexity and is fast compared to
other conventional methods, it can be used to analyze very large
strip arrays. Scattering solution of a 50-wavelength wide strip is
illustrated.

I. INTRODUCTION

HE WAVE scattering by strip gratings supported by a
dielectric slab remains a canonical problem in wave
scattering theory. It also finds applications in a number of
areas like frequency selective surface, slow-wave structures,
leaky-wave antennas, and microstrip arrays. For instance, in
frequency-selective-surface applications, it could be used to
reduce radar cross sections. Hence, wave scattering from
strip gratings has been investigated by many authors [1]1-[6].
However, most works are limited to infinite periodic gratings.
Recently, we have developed a fast recursive method for di-
electric scattering solutions [7]. This method has been adapted
to deriving the solution of a finite nonperiodical strip arrays
or a single strip [8} suspended in free space. However, for
practical applications, the strip arrays are usually supported by
a dielectric slab. This paper extends the method of the previous
work [8] to strip arrays supported by a dielectric slab. Due to
the proximity of the slab to the strip array, the introduction
of the slab will change the scattering properties of the strip
array. This change is caused by the interaction between strips
and the slab. Numerical results indicate that this interaction is
apparent by studying the current distribution of a large strip.
In this implementation of the recursive algorithm, plane
waves are used as bases for the incident wave as well as the
scattered waves. In particular, the scattered wave is expanded
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with spectral distribution along a vertical branch cut of the
Sommerfeld-type integral. This greatly expedites the represen-
tation of the waves, and results in a computational algorithm
with O(N log? N') complexity for a single incident wave, and
with O(N?log N) complexity for N incident waves.

II. FORMULATION

Fig. 1 shows the geometry of strips which are infinitely thin
perfect conductors supported by a dielectric slab. The relative
dielectric constant of the slab is ¢,. The ith strip is located at
d;, with width w;, where ¢ = 1,2,---, N, and N is the total
number of the strips. For a uniform array, we use a to denote
the width of each strip and d, the distance between the centers
of two adjacent strips. When a plane wave is incident, it will
induce current (and charge) distributions on the strips, which
in turn radiate to form the scattered waves. Here, the induced
current {and charge) is unknown. It can be solved for by the
recursive method illustrated in detail in [8]. In the following,
we shall first derive the Green’s function for this geometry,
and then illustrate how the recursive method can be applied to
this problem. In the following analysis, the time dependence
of e~** is suppressed throughout and (9/0z) = 0.

Using the spectral technique, for H, polarized field. the
z-component of the electric field due to an z- directed line
current source is given by [10]
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In the same way, we can derive the corresponding field for
E, polarized case. It is
i
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In the above, R™ and RTP are generalized reflection
coefficients [10] for TM-to-y and TE-to-y waves, respectively.
They have different forms for different configurations.

In summary, the fields due to a line source in a planarly
layered medium can be expressed in terms of one component
of the potential A. When the source is on the boundary
(¥ = 0) and for matching boundary condition, we need only
consider the field at y = 0. In this case, A has the following
form

N i oo % 1k, (z—2")
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where, k2 = k® — k2. The “+” sign corresponds to TE
case with A = A, and R = R™", whereas the “—” sign
corresponds to TM case with A = 4, and R = R™ [10].

The inversion path of the Fourier integral in (3) is taken to
be the Sommerfeld integration path, which is slightly above
the real axis for £, < 0 and slightly below the real axis for
kg > 0 [10]. When 2 — z’ is large, the integrand becomes a
rapidly oscillating function of %, and its numerical evaluation
becomes difficult. To expedite the numerical evaluation of the
integral, the path of the integration is deformed to a branch cut.
Hence, when h is small, (3) is equal to a branch cut integral
plus the contribution from the pole of R at k; = k,, ic.,
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where

fp=2mi Lm (ky — kep)R(ka, ky). (4a)
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The branch-cut integral corresponds to a space wave with
the phase velocity of free space. It corresponds to a wave
with most of its energy travelling in the free space. The pole
corresponds to a guided mode in the slab region [10], [11].
Since it is a guided mode with phase velocity slower than that
of the free space, it will be evanescent in the free-space region.
Hence, it is often called a surface wave. Also, when the slab
thickness is small, the guided wave has a phase velocity close
to that of free space [11].

After the integral is truncated and discretized, (4) can be
expressed as

M+1
Al —a') = gme ===, (5)
m=1
where u,, = s, — ik, sy and gn,m = 1,2,--- M are

numerical integration points and coefficients, respectively,
UpM+1 = —ikep, and gary1 = fp.

Equation (5) indicates that the scattered field from a strip
can be expanded in terms of a plane-wave basis. Consequently,
this allows a T matrix be defined for a single substrip using a
plane wave basis. Then, the recursive algorithm described in
[7] and [10] can be used to find the scattering solution of a
finite strip array. The adapted algorithm is described in [8].

Formally, (5) expands the field using the plane wave basis
which is similar to the method used in [8]. Hence the recursive
algorithm described in [8] can be used for this problem without
much change. Again, in order to reduce the computational
complexity, the discrete points s,,,m = 1,2,---, M, are
unevenly distributed which is the densest at s = 0 and becomes
increasingly coarser when s — oo. In this manner, the number
of sampling needed for the integral is minimized, and grows
only logarithmically with the size of the problem.

To test the validity of the recursive result, method of
moments is also used to solve the same problem. In this
method, the Green’s function is found by evaluating the
Sommerfeld integral numerically. Since the convergence of the
integration in (4) is very slow, we rewrite it into the following
form to accelerate its convergence:

]
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where
Re= Jim Rlksky)=(1-e)/(1+6). (6
We can show that
R~ R, o 1/k2, (ky — 00). %)

Hence, the convergence of (6) is much faster than that of (4).

III. COMPUTATIONAL COMPLEXITY

The computational complexity of the above algorithm can
be analyzed as before [7]-[10]. Previous analysis shows the
complexity of the recursive algorithm to be O(N P?), where P
is the number of harmonics needed to represent the aggregate
T matrix. The size of the aggregate T matrix is P x P.

In this problem, since the plane waves are expanded on a
branch-cut integral which are efficient, and that the number
of sampling points grows logarithmically as the size of the
problem, the number of plane waves P needed to represent
the scattered field or the aggregate T matrix is proportional to
log N. Hence, the total complexity of the recursive algorithm
is O(Nlog? N).

When N incident waves is assumed in this problem, the
aggregate T matrix is no longer square, but an (N +P) x P ma-
trix [8]. The total computational complexity of the algorithm
can be shown to be O(N(N + P)P) which is O(N?log N)
when N is large. Hence, this algorithm represents a fast way
of solving this scattering problem with reduced complexity
compared to other methods of solving this problem.
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Fig. 2. Induced current of a 1\ strip on a slab without a ground plane
(er = 2.1,h = 0.1)). () H; incidence at §* = 45°; (b) E. incidence
at §* = 60°.

IV. NUMERICAL RESULTS

In order to test the validity of the algorithm and analyze the
scattering properties of slab, we computed the current distri-
bution for several single strips and compared the solution with
the method of moments. Motivated by frequency-selective
surface applications, the following studies will be done without
the presence of the ground plane. Notice, however, that
frequency-selective surfaces are often studied by assuming
infinite periodicity so that Floquet theorem can be invoked.
However, in practice, the frequency-selective surfaces are
truncated and finite in extent. The algorithm here represents an
efficient way to study finite-extent frequency-selective surfaces
where Floquet theorem can not be invoked.

Fig. 2(a) shows the current of a 1 strip on a slab (e, =
2.1, h = 0.1)) for H, incident wave at §* = 45°. The moment
method result is also shown in this figure. The agreement
between them is good. Fig. 2(b) is the result of the same
problem for E, polarized case with §* = 60°.
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Fig. 3. Induced current of a 50 strip on a slab without a ground plane (H .

incident wave at 8¢ = 90°).
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Fig. 4. Scattering pattern of a uniform array of 10 strips on a slab without
a ground plane (&, = 2.57,h = 0.171A,a = d/2, E.-wave incidence at
6* = 60°).

Fig. 3 shows the current of a larger strip (w = 50\, H,
incident wave at % = 90°¢. = 2.6,h = 0.1)). From this
figure, we observe the effect of the interaction between the
incident wave (e#=®) and the guided wave (e%#®). The fast
variation is due to the sum of their spatial frequencies while
the slower variation is due to the difference of their spatial
frequencies. This interaction was not observed when the strips
were suspended in air, because there was no guided mode on
the dielectric slab [8].

For a strip array, we computed the scattering pattern of a
10 strip uniform array. The result is shown in Fig. 4. We find
that as the frequency changes, the reflected field also changes.
To see this more clearly, we draw a curve of the RCS in the
reflect direction versus normalized d, which is the separation
between strips, as shown in Fig. 5. The interference property
of the strips, where different magnitudes of reflections and
transmissions can occur at different frequencies, is often used
for frequency-selective surface applications.
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Fig. 5. RCS versus d/X for a uniform array of 10 strips on a slab without
a ground plane (e, = 2.57,h = 0.171\,a = d/2, E.-wave incidence at
0 = 60°).

V. CONCLUSION

In conclusion, we have demonstrated a fast algorithm with
reduced computation complexity for computing current dis-
tributions and scattered fields of strips and strip arrays on
a dielectric slab. This algorithm is shown to work for both
the benign E, polarization and the pathological H, polar-
ization. Because of its reduced computational complexity,
the algorithm provides a way to analyze large, finite, planar
strip gratings supported by a dielectric slab. By changing the
reflection coefficients in (3), this algorithm can be applied to
the above grating structure with a dielectric slab on a conductor
ground.

Compared to the strips without dielectric slab, we now have
to account for the effect of the surface wave (or guided wave)
pole in the interaction between the strips. When the slab is
thin compared to wavelength, the phase velocity of the surface
wave (pole contribution) is almost the same of that of the space
wave (branch cut contribution). The interference between the
surface wave and the space wave results in a slow variation
in the current distribution on a wide strip.
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